QRразложение сингулярной матрицы
Листинг 8.22. QR-разложение сингулярной матрицы
Если бы исходная СЛАУ Aх=b не была вырожденной, то можно было сразу записать: QTQ-Rx=QTb, откуда следует (благодаря ортогональности матрицы Q): Rx=QTb. Так как матрица к — треугольная, решение данной системы получается по формулам прямого хода. Если использовать нашу пользовательскую функцию решения треугольной системы (см. разд. 8.3. Т), то результат исходной СЛАУ запишется в виде одной строки кода: trg(R,QTb) (соответствующий пример решения невырожденной СЛАУ вы найдете на компакт-диске).
Обратимся теперь к проблеме решения СЛАУ с сингулярной квадратной NxN или прямоугольной NxM матрицей А. Если ее ранг равен k (он может быть меньше N и м, как в листинге 8.22, где N=M=S, a k=2), то получающаяся треугольная матрица R имеет следующую структуру:
где R1 — верхняя треугольная матрица, a R2 — просто некоторая матрица, а нули обозначают, в общем случае, нулевые матрицы соответствующих размеров.
Если система вырожденная, то она имеет бесконечное множество псевдорешений (векторов, минимизирующих норму невязки). При помощи QR-разложения можно сразу выписать одно из них (правда, не обладающее минимальной нормой). В нашем примере последняя строка матрицы R содержит одни нули, поэтому последняя компонента вектора псевдорешения х может быть абсолютно любой. Если положить х2=0, то остальные компоненты х определятся из треугольной СЛАУ R1x=QTb, как это проиллюстрировано листингом 8.23.