О традиционных алгоритмах интегрирования
4.1.3.О традиционных алгоритмах интегрирования
Прежде чем перейти к изложению метода численного интегрирования, реализованного в Mathcad, скажем несколько слов об основных принципах численного интегрирования. Исходя из геометрического смысла определенного интеграла функции f (х) как площади фигуры, образованной графиком этой функции и осью х, можно предложить самый простой способ интегрирования "хорошей" функции — применить формулу прямоугольников. С ее помощью площадь упомянутой искомой фигуры подсчитывается как сумма элементарных прямоугольников, множеством которых заменяется подынтегральная функция f (х).
Иллюстрация метода прямоугольников приведена на Рисунок 4.4. Для подсчета интеграла i интервал интегрирования [а,b] разбивается на N отрезков. На. каждом i-м отрезке f (х) заменяется прямоугольником с шириной h и высотой f (xi). Площадь каждого из этих элементарных прямоугольников составляет hf (xi), а их сумма s может считаться приближением к искомому интегралу I. Несложно показать, что при N->~ множество элементарных прямоугольников стремится к искомой фигуре, образованной подынтегральной функцией, а значение S->I, причем погрешность (отличие s от точного значения i) составляет o(h2).
Можно воспринимать смысл алгоритма прямоугольников в замене исходной подынтегральной функции другой, близкой к ней (в данном случае, кусочно-непрерывной) функцией, интеграл от которой легко подсчитать аналитически. Принцип более точных методов интегрирования как раз и состоит в интерполяции подынтегральной функции f (х) некоторой близкой зависимостью у(х) и расчете интеграла уже от этой функции. Важно, чтобы при этом, во-первых, интеграл от у(х) мог быть точно рассчитан аналитическими методами; и, во-вторых, функция f (х) была бы по возможности ближе к у (х), чтобы уменьшить погрешность.